
7 29 ELASTIC NAVE DISPERSION IN LAhINATED CONPOSITE PLATE I/
(U) COLORADO UNIV AT BOULDER DEPT OF MECHANICAL
ENGINEERING S K DRTTA ET AL. JUL 87 CUNER-8?-2

UNCLASSIFIED N114-8-K-281 F/S 11/4 NLIIEIIhIIEIIIIIE



!4b

3.2.

go2 2.2

S1.2.5 ________ _1.4__

1111 lll___'

'E~~ (~%



00

.0)

ELASTIC WAVE DISPERSION
IN LAMINATED COMPOSITE PLATE

S.K. Datta

University of Colorado, CIRES

A.H. Shah

University of Manitoba

Y. Al-Nassar & R.L. Bratton
University of Colorado

CUMER 87-2 July. 1987

Contract N00014-86-K-0280

MAR I 8 1988" .

ApPfoved orPic ~- a¢r .

Unn-,.,



ELASTIC WAVE DISPERSION IN LAMINATED COMPOSITE PLATE

Subhendu K. Datta
Department of Mechanical Engineering and CIRES
University of Colorado
Boulder, CO 80309-0449

Arvind H. Shah
Department of Civil Engineering
University of Manitoba
Winnipeg, Canada R3T 2N2

Y. AI-Nassar
R.L. Bratton
Department of Mechanical Engineering
University of Colorado
Boulder, CO 80309-0427

INTRODUCTION
In the past dynamic behavior of infinite periodically laminated medium has been stu-

died extensively. A review of the literature on exact and approximate analyses of this prob-
Sem can be found in 11,21.
- In this paper we use the stiffness method that was presented in {2 to study disper-
sion of waves in a laminated plate. In this approach each lamina is divided into several
sublayers and the displacement distribution through the thickness of each sublayer is
approximated by polynomial interpolation functions in such a way that displacements and
tractions are continuous across the interfaces between adjacent sublayers. Details of the
method can be found in J2,3]. Here we summarize the pertinent equations and discuss
numerical results obtained for particular systems.

This study is motivated by a desire to model wave propagation in a continuous fiber-
reinforced laminated plate. If the wavelength is long compared to the fiber diameters and
spacing, then each lamina can be modeled as a homogeneous transversely isotropic
medium with the symmetry axis parallel to the fibers. The overall effective elastic proper-
ties of such a medium can be calculated from the fiber and matrix properties by using an
effective modulus theory [4,S]. Such an assumption has been made in this paper. Thus
the dispersion characteristics of guided waves in a layered anisotropic plate has been stu-
died here. • i

GOVERNING EQUATIONS

We consider time harmonic waves in a plate composed of m laminae. For simplicity
in analysis it will be assumed that each lamina is transversely isotropic with the symmetry
axis aligned with either the x- or the y-axis (Fig. 1). This assumption is not necessary for



the development of the equations, but it is made here to keep the algebra as simple as pos-

sible for the anisotropic problem at hand. Under this assumption the wave propagation

problem reduces to two uncoupled ones: plane strain in which the displacement corn-

ponents are ux, 0, u*, arnd SH or antiplane strain when the only nonzero displacement

component is- us,. So in the following we shall treat these two separately.
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Fig. 1. Geometry of the laminated plate. t".1%

Plane Strain

Consider the ith lamnina bounded by z=zi-.. and z=zi+1 . The Stress strain relation in

this lamnina will be given by

cIP cIP 0

ass = I cj .c 0 (E)

where 0 0 ci T,

whr and cu are the stress and strain components, respectively, and we have written

,y.2. Note that if y-axis is the axis of symmetry, then clp)-cI' and cjP=(cP-cP).

The problem is then equivalent to that of an isotropic one.

In order to get good numerical results each lamina will be divided into several sub-

layers, M1, say. Within the jth sublayer we will choose a local coordinate with the origin at

the mid-plane and xj, yj, zj, parallel to the global x,y,z axes, respectively. Let 2h3 be the

thickness of this sublayer. Denoting u0 ) to be the displacement at a point in the jth lam-

ina we write

U jl+ujf 2 + x- f3 + X)i fX , (2)
IU =cur 

I . su



ucp 8Uj..+i f + C9 f4 (2)

U)  Pw!f wjf 2 + j C 6' C.4 ax)

where f. (n=.1,...,4) are cubic polynomials in the local coordinate zj given by

11! f1 h= 4
1' f 2" f(2-3q+ $, f = - C(-+l-- jS "

(3)

f, .J(I-qj-,27+2 , f, = L(... ~i '+t2+j4 4

Here tqj=zj/h j and u, wj, Xj, O are the values of u., U., a,,, and a. at the jth node. These
nodal values of the displacement and traction components are functions of Xj (: x) and t.
In this paper it will be assumed that the time dependence is of the form e- *, w being the
circular frequency. The factor e- kA will be dropped in the sequel.

The equations governing the nodal generalized coordinates {uj, xj, wj, oj) are obtained
using Hamilton's principle. For details see [3]. It is found that the amplitudes of the gen-
eralized nodal variables satisfy the matrix equation

(k4[K I - ik3[K 1 - k2jKJ + ikKI +1K)) {Qo =0 (4)

-1 - 3 - -4 -5 ~

where we have written

{Q (Q )e'x (5)

{Q) being the vector of all the generalized coordinates. Matrices [K J, etc., have been

defined in 13] . Note that [K3k,...,fk1 depend linearly on w .

For nontrivial solution the determinant of the coefficient matrix of {Q0 ) must be
zero. This is the dispersion equation to solve for k for given w.

Antiplane Strain
The derivation given above is for the plane strain. The antiplane strain case can be

considered in a similar manner and that results in a much simpler frequency/wave number
equation. In this case we assume

Y vj_.f 1 + vjf2 + -j-1._.fs + 1-(6)

Here r-cau6)/cz. The corresponding eigenvalue problem for the wave number is

'V (-k'[K + [Ka]) {Qo) = 0 (7)

As illustrative examples we solved equations (4) and (7) for a fiber-reinforced (0 )
homogeneous plate and a three-layered (0 */90' /0 ) plate with or without interface

* layers. These results are discussed in the next section.

NUMERICAL RESULTS AND DISCUSSION

As an application of the technique described above, we considered a fiber-reinforced
plate when the fibers are aligned along the x-axis (0" ). The properties of the plate are
given in Table 1. As mentioned before, for propagation in the 0 (90 * ) direction the prob-
lem is tractable analytically. Figure 2 shows the frequency spectrum for propagation in the
x-direction. Also shown in this figure is the coniparifon with the exact solution. It is
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Fig. 4. Dispersion curves for a 0 /90 /0 plate with soft interface thin layers.
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Fig. 5. First three real branches of the frequency spectrum for a 0 /90 '/0 plate with

soft interface thin layers.



Finally, Fig. 6 shows the same effect on the first three branches of the frequency spec-
trum of SH waves.
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Fig. 6. First three real branches of the frequency spectrum of SH waves for a 0" /90
plate with soft interface thin layers.

CONCLUSION

Dispersion curves are presented for propagation of in-plane and out-of-plane (SH)
waves propagating along the fibers in a fiber-reinforced plate. These curves differ signifi-
cantly from those in an isotropic plate. It is also shown that the dispersion curves for
waves propagating in a cross-ply (0 /90" /0 * ) laminate with interface layers differ signifi-
cantly from those for a laminate without interface layers and both of these are different
than the ones for a single-layered fiber-reinforced plate. The most significant features of
the curves for a plate with interface layers are the lowering of the cut-off frequencies and
their slopes. This should have significant effect on the overall plate response and would

allow ultrasonic characterization of interface properties.
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seen that the comparison is excellent. In this figure il -H rI and y-t .iL. It
2xv CSWP)-O.2;r

is seen that as k-.4oo the slopes of the first symmetric and antisymnretric modes tend to
the ratio VR/ ITU7,- where V p is the Rayleigh wave velocity in the x-direction. For the
stiffness me thod we used 15 sublayers.

Table 1. Properties of 0 * and 90.* laminae, and the interface layer. All the stiffness are
in the units of 10 11N/M 2.

__________ pg/cmn C3) ____ C2 2  C12  C44 C55__

0' larnina 1.2 1.6073 0.1392 0.0644 0.0350 0.070i

Interface 1.8 0.0865 0.0865 0.0475 0.0195 0.0195
90.* lamina 1.2 0.1392 11.6073 10.0644 10.0707 10.0350
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The next problem considered as a sandwich plate with 0 /90 /0 configuration.
Figure 3 shows the dispersion curves. These differ appreciably from the ones shown in Fig.
2. It is seen that the cut-off frequencies are lowered as well as the slopes of the curves.
Branches of nonpropagating modes are also quite different.

Figure 4 shows the dispersion curves for a 0* /90 */0 plate with two interface layers
between the two outer laminae (0 ) and one inner lamina (90'). It is assumed that
thickness ratio of each interface layer and each adjacent lanina is 0.1. Cut-off frequencies
are seen to be lower than those in Fig. 3. To see the effect of interface layers on the first
three branches of the frequency spectrum we plotted renormalized fl vs. -1 in Fig. 5. In

this figure n and -f= h . It is interesting to note the slowing down

of the waves as the wavelength becomes of the order of the thickness of the interface
layers.
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Fig. 3. Dispersion curves for 0 /90 /0 plate. Here H is the total thickness of the
plate, fl , and = kH
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